scholarly journals Combustion Organic Aerosol as Cloud Condensation Nuclei in Ship Tracks

2000 ◽  
Vol 57 (16) ◽  
pp. 2591-2606 ◽  
Author(s):  
Lynn M. Russell ◽  
Kevin J. Noone ◽  
Ronald J. Ferek ◽  
Robert A. Pockalny ◽  
Richard C. Flagan ◽  
...  
2018 ◽  
Vol 176 ◽  
pp. 103-109 ◽  
Author(s):  
Yanwei Li ◽  
Antonios Tasoglou ◽  
Aikaterini Liangou ◽  
Kerrigan P. Cain ◽  
Leif Jahn ◽  
...  

2000 ◽  
Vol 57 (16) ◽  
pp. 2696-2706 ◽  
Author(s):  
James G. Hudson ◽  
Timothy J. Garrett ◽  
Peter V. Hobbs ◽  
Scott R. Strader ◽  
Yonghong Xie ◽  
...  

2014 ◽  
Vol 14 (18) ◽  
pp. 9831-9854 ◽  
Author(s):  
C. Wittbom ◽  
A. C. Eriksson ◽  
J. Rissler ◽  
J. E. Carlsson ◽  
P. Roldin ◽  
...  

Abstract. Particles containing soot, or black carbon, are generally considered to contribute to global warming. However, large uncertainties remain in the net climate forcing resulting from anthropogenic emissions of black carbon (BC), to a large extent due to the fact that BC is co-emitted with gases and primary particles, both organic and inorganic, and subject to atmospheric ageing processes. In this study, diesel exhaust particles and particles from a flame soot generator spiked with light aromatic secondary organic aerosol (SOA) precursors were processed by UV radiation in a 6 m3 Teflon chamber in the presence of NOx. The time-dependent changes of the soot nanoparticle properties were characterised using a Cloud Condensation Nuclei Counter, an Aerosol Particle Mass Analyzer and a Soot Particle Aerosol Mass Spectrometer. The results show that freshly emitted soot particles do not activate into cloud droplets at supersaturations ≤2%, i.e. the BC core coated with primary organic aerosol (POA) from the exhaust is limited in hygroscopicity. Before the onset of UV radiation it is unlikely that any substantial SOA formation is taking place. An immediate change in cloud-activation properties occurs at the onset of UV exposure. This change in hygroscopicity is likely attributed to SOA formed from intermediate volatility organic compounds (IVOCs) in the diesel engine exhaust. The change of cloud condensation nuclei (CCN) properties at the onset of UV radiation implies that the lifetime of soot particles in the atmosphere is affected by the access to sunlight, which differs between latitudes. The ageing of soot particles progressively enhances their ability to act as cloud condensation nuclei, due to changes in: (I) organic fraction of the particle, (II) chemical properties of this fraction (e.g. primary or secondary organic aerosol), (III) particle size, and (IV) particle morphology. Applying κ-Köhler theory, using a κSOA value of 0.13 (derived from independent input parameters describing the organic material), showed good agreement with cloud droplet activation measurements for particles with a SOA mass fraction ≥0.12 (slightly aged particles). The activation properties are enhanced with only a slight increase in organic material coating the soot particles (SOA mass fraction < 0.12), however not as much as predicted by Köhler theory. The discrepancy between theory and experiments during the early stages of ageing might be due to solubility limitations, unevenly distributed organic material or hindering particle morphology. The change in properties of soot nanoparticles upon photochemical processing clearly increases their hygroscopicity, which affects their behaviour both in the atmosphere and in the human respiratory system.


2007 ◽  
Vol 7 (20) ◽  
pp. 5447-5466 ◽  
Author(s):  
J. R. Pierce ◽  
K. Chen ◽  
P. J. Adams

Abstract. This paper explores the impacts of primary carbonaceous aerosol on cloud condensation nuclei (CCN) concentrations in a global climate model with size-resolved aerosol microphysics. Organic matter (OM) and elemental carbon (EC) from two emissions inventories were incorporated into a preexisting model with sulfate and sea-salt aerosol. The addition of primary carbonaceous aerosol increased CCN(0.2%) concentrations by 65–90% in the globally averaged surface layer depending on the carbonaceous emissions inventory used. Sensitivity studies were performed to determine the relative importance of organic solubility/hygroscopicity in predicting CCN. In a sensitivity study where carbonaceous aerosol was assumed to be completely insoluble, concentrations of CCN(0.2%) still increased by 40–50% globally over the no carbonaceous simulation because primary carbonaceous emissions were able to become CCN via condensation of sulfuric acid. This shows that approximately half of the contribution of primary carbonaceous particles to CCN in our model comes from the addition of new particles (seeding effect) and half from the contribution of organic solute (solute effect). The solute effect tends to dominate more in areas where there is less inorganic aerosol than organic aerosol and the seeding effect tends to dominate in areas where there is more inorganic aerosol than organic aerosol. It was found that an accurate simulation of the number size distribution is necessary to predict the CCN concentration but assuming an average chemical composition will generally give a CCN concentration within a factor of 2. If a "typical" size distribution is assumed for each species when calculating CCN, such as is done in bulk aerosol models, the mean error relative to a simulation with size resolved microphysics is on the order of 35%. Predicted values of carbonaceous aerosol mass and aerosol number were compared to observations and the model showed average errors of a factor of 3 for carbonaceous mass and a factor of 4 for total aerosol number; however, errors in the accumulation mode concentrations were found to be lower in comparisons with European and marine observations.. The errors in CN and carbonaceous mass may be reduced by improving the emission size distributions of both primary sulfate and primary carbonaceous aerosol.


2006 ◽  
Vol 40 (4) ◽  
pp. 605-617 ◽  
Author(s):  
Kara E. Huff Hartz ◽  
Joshua E. Tischuk ◽  
Man Nin Chan ◽  
Chak K. Chan ◽  
Neil M. Donahue ◽  
...  

2011 ◽  
Vol 11 (17) ◽  
pp. 8913-8928 ◽  
Author(s):  
A. T. Lambe ◽  
T. B. Onasch ◽  
P. Massoli ◽  
D. R. Croasdale ◽  
J. P. Wright ◽  
...  

Abstract. Secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA) were produced in laboratory experiments from the oxidation of fourteen precursors representing atmospherically relevant biogenic and anthropogenic sources. The SOA and OPOA particles were generated via controlled exposure of precursors to OH radicals and/or O3 in a Potential Aerosol Mass (PAM) flow reactor over timescales equivalent to 1–20 days of atmospheric aging. Aerosol mass spectra of SOA and OPOA were measured with an Aerodyne aerosol mass spectrometer (AMS). The fraction of AMS signal at m/z = 43 and m/z = 44 (f43, f44), the hydrogen-to-carbon (H/C) ratio, and the oxygen-to-carbon (O/C) ratio of the SOA and OPOA were obtained, which are commonly used to characterize the level of oxidation of oxygenated organic aerosol (OOA). The results show that PAM-generated SOA and OPOA can reproduce and extend the observed f44–f43 composition beyond that of ambient OOA as measured by an AMS. Van Krevelen diagrams showing H/C ratio as a function of O/C ratio suggest an oxidation mechanism involving formation of carboxylic acids concurrent with fragmentation of carbon-carbon bonds. Cloud condensation nuclei (CCN) activity of PAM-generated SOA and OPOA was measured as a function of OH exposure and characterized as a function of O/C ratio. CCN activity of the SOA and OPOA, which was characterized in the form of the hygroscopicity parameter κorg, ranged from 8.4×10−4 to 0.28 over measured O/C ratios ranging from 0.05 to 1.42. This range of κorg and O/C ratio is significantly wider than has been previously obtained. To first order, the κorg-to-O/C relationship is well represented by a linear function of the form κorg = (0.18±0.04) ×O/C + 0.03, suggesting that a simple, semi-empirical parameterization of OOA hygroscopicity and oxidation level can be defined for use in chemistry and climate models.


2012 ◽  
Vol 12 (15) ◽  
pp. 7285-7293 ◽  
Author(s):  
G. J. Engelhart ◽  
C. J. Hennigan ◽  
M. A. Miracolo ◽  
A. L. Robinson ◽  
S. N. Pandis

Abstract. We quantify the hygroscopic properties of particles freshly emitted from biomass burning and after several hours of photochemical aging in a smog chamber. Values of the hygroscopicity parameter, κ, were calculated from cloud condensation nuclei (CCN) measurements of emissions from combustion of 12 biomass fuels commonly burned in North American wildfires. Prior to photochemical aging, the κ of the fresh primary aerosol varied widely, between 0.06 (weakly hygroscopic) and 0.6 (highly hygroscopic). The hygroscopicity of the primary aerosol was positively correlated with the inorganic mass fraction of the particles. Photochemical processing reduced the range of κ values to between 0.08 and 0.3. The changes in κ were driven by the photochemical production of secondary organic aerosol (SOA). SOA also contributed to growth of particles formed during nucleation events. Analysis of the nucleation mode particles enabled the first direct quantification of the hygroscopicity parameter κ for biomass burning SOA, which was on average 0.11, similar to values observed for biogenic SOA. Although initial CCN activity of biomass burning aerosol emissions are highly variable, after a few hours of photochemical processing κ converges to a value of 0.2 ± 0.1. Therefore, photochemical aging reduces the variability of biomass burning CCN κ, which should simplify analysis of the potential effects of biomass burning aerosol on climate.


Sign in / Sign up

Export Citation Format

Share Document